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The motion of large bubbles in horizontal channels 

By G. C. GARDNER AND I. G. CROW 
Central Electricity Research Laboratories, Leatherhead, Surrey 

(Received 9 December 1969) 

An experimental investigation of a large long air bubble moving into stationary 
water in a horizontal channel of rectangular cross-section is presented and three 
well-defined flow regimes for the water discharged beneath the bubble are de- 
scribed. The influence of surface tension on the bubble velocity is explained using 
the hypothesis that the radius of curvature of the two-phase interface close to 
the upper wall does not vary greatly with channel depth and is close to the 
theoretical value for a channel of such depth that the bubble is just motionless. 

1. Introduction 
The propagation rate of large bubbles in vertical tubes has received considerable 

attention in the last decade, largely because of its value in interpreting the 
two-phase ‘slug flow’ r6gime. White & Beardmore (1962) demonstrated that the 
dimensionless groups which successfully correlate experimental information, if 
the light phase viscosity can be ignored, are a Froude number 

an Eotvos number, 

and a physical property group 

40. c -- 
a - Apgd2 ’ 

where u is the bubble velocity relative to the liquid ahead of it, g is the gravita- 
tional constant, d is the tube diameter, p is the heavy phase density, A p  is the 
density difference between the heavy and light phases, 0. is the surface tension 
and p is the heavy phase viscosity. 

It was shown that the liquid phase viscosity, however, has negligible influence 
if P is less than 10V, which is true for the air-water system used in the present 
work. In that event Fd achieves an essentially constant value of slightly less 
than 0.35 for & < l O W ,  in agreement with the theoretical conclusion of 
Dumitrescu (1943) for inviscid flow without surface tension. On the other hand 
Fd is zero according to Bretherton (1961), when & > 1.19, which substantially 
agrees with White & Beardmore’s experimental result that the bubble blocks 
the tube for E d  1.0. 

All the results noted above were obtained for a heavy phase which was 
stationary with respect t o  the tube wall’upstream of the advancing bubble or 
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for u, = 0, where u, is the average heavy phase velocity relative to the wall 
above the bubble. Nicklin, Wilkes & Davidson (1962), however, showedthat, when 
uL + 0, the consequent velocity profile in the heavy phase modifies the momentum 
flux relative to the bubble in such a manner as to increase the bubble velocity 
relative to the average fluid velocity above it. Thus, for conditions such that Fa 
otherwise equals 0.35, this last velocity increases by 0 . 2 ~ ~ .  

Experimental results for sloping tubes have been obtained by Runge & Wallis 
(1965) and Zukoski (1966). Zukoski used two-liquid-phase systems, amongst 
others, and clearly demonstrated the validity of using Ap in the fashion shown 
by (1.1) and (1.2). He also gave a curve of Fa versus X a  for horizontal tubes, 
which is useful in confirming the conclusions of the present paper. 

A theory for large long bubbles in horizontal channels was given by Benjamin 
(1968). He examined the inviscid flow without surface tension and found that 
F = [u2/gh]g (p/Ap)* = 0.5 for a system of parallel horizontal surfaces, while for 
a tube of circular cross-section Fd = 0.542, in substantial agreement with an 
extrapolation of Zukoski’s data. 

The present paper describes an experimental investigation of a large bubble 
of air advancing into stationary water in a horizontal channel of rectangular 
cross-section. It confirms that Benjamin’s result is probably correct for very 
deep channels but consideration has to be given to the influence of surface 
tension, at least for channels as deep as 175mm, which was the deepest used 
experimentally. 

2. Experimental apparatus and observations 
The apparatus consisted of a horizontal Perspex channel, 1830 mm long and 

100 mm wide, whose top could be moved within the retaining walls to vary the 
depth from 0 to 175 mm. One end of the channel was closed by a fixed wall while 
the other was sealed with a flap, hinged at  the bottom. Releasing the flap allowed 
water to discharge freely, as it was displaced by the advancing air bubble. 

The channel was carefully cleaned before use, but it was none the less felt, 
after the first few runs, that the water might not be satisfactorily wetting the 
upper Perspex wall. This surface was therefore changed to brass but it made no 
difference to the measurements, in line with Zukoski’s (1966) experience. 

The channel was carefully aligned for each change of channel depth and the 
final, most sensitive check was to ensure that the bubble ran true down the whole 
length of the channel. The bubble velocity was measured by timing the passage 
of the nose past markers set 500 and 1000 mm apart. Still photographs and cine 
films were taken during separate runs to measure the depth of flow downstream 
of the bubble nose and to make general observations of the nature of the flow. 

Three flow regimes were observed, which are illustrated by the photographs 
in figure 1, plate 1, and which will be described with reference to the Eotvos 
number, 

relevant to rectangular channels. h is the channel depth. 
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For deep channels, withz < 0-02, the flow was much as conceived by Benjamin 
(1968)) except for the curved nose near the top wall. A disturbance in the form of 
a surface elevation was created by the release of the end flap but it decayed 
rapidly and the bubble velocity was sensibly constant with respect to distance 
down the channel. 

In  the range of X from 0.02 to 0.105, large waves formed downstream of the 
bubble nose, beyond the point at  which the bubble attained its maximum depth. 
These waves kept pace with the bubble and showed little, if any, attenuation. 
At one value of X in this range, however, capillary waves were seen to move 
slowly towards the bubble nose (see figure 1 (c ) ) .  Again, the bubble velocity did 
not alter along the channel. 

~- 
-- 
--- 

FIGURE 2. The blocked condition, showing undrained water. 

For X > 0.105 the flow was much more quiescent and the fraction of the channel 
depth occupied by the liquid downstream of the bubble nose increased. The 
channel finally blocked and P equalled zero when X reached a critical value of 
C, = 0.368. This was determined by giving the upper channel wall a slight slope 
to allow the bubble to advance into a thinning cross-section and halt at  the point 
where the depth was its critical value. Figure 2 illustrates the blocked system, 
which shows that a substantial layer of water of depth h, remained undrained 
from the bottom of the channel. The sill over which the water discharged was 
square-ended and the water drained until the vertical part of the sill was just 
wetted or, in other words, the water contacted the end of the horizontal surface 
a t  an angle of +r. Some measurements were made with a chamfered sill in an 
attempt to induce better drainage but drainage was never perfect. 

The experimental results for the bubble velocity are shown in the F versus 
C plot of figure 3. A distinction is made between results obtained with the square- 
ended and chamfered sills. It is clear that the form of sill had little influence 
upon the results, except for channels whose depth was close to the critical value 
for blockage. 

The experimental results for the depth of water flow downstream of the bubble 
nose are given in figure 4 in terms of H = h,/h and HJ = h,/h versus 2. h2 is the 
minimum depth of flow occurring close to the bubble nose and h, is the average 
depth of flow measured downstream from the first wavecrest following the nose. 
The three flow regimes discussed above can be distinguished in this figure. 

Figure 5 presents bubble nose profiles traced from photographs and a com- 
parison is made with the bubble profile predicted by Benjamin (1968). There is 
not a close agreement between the theoretical and experimental shapes for a 
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FIGURE 3. Comparison of experimental and calculated values of P for a rectangular channel. 

0, square-ended sill; 0 ,  chamferred sill. 
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FIGURE 4. Comparison of experimental and calculated values of H and HJ for a rectangular 
channel. x , minimum reduced depth; 0, average reduced depth after hydraulic jump. 

Top of channel 

d 
FIGURE 5. Superimposed bubble profiles for four channel depths together with theoretical 
profile of Benjamin (1968) for a depth of h = 107 mm. a, h = 15 mm; b, h = 27-5 mm; 
c, h = 60 mm; d, h = 107 mm; e ,  h = 107 mm, Benjamin theory. 
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channel of 107 mm depth, though agreement might not be expected where surface 
tension still has appreciable influence. 

3. Discussion of results 
3.1. Bubble velocity 

Surface tension has a substantial effect upon the bubble velocity for the air- 
water system in channels as deep as 175mm. Zukoski (1966) came to the same 
conclusion with respect to large bubbles in horizontal tubes and it deserves 
some quantitative explanation. Consider the system illustrated in figure 6 where, 
for convenience, the bubble is assumed to be held stationary by flowing liquid. 

FIGURE 6. Dimensions and velocities. 

The upstream velocity is u and the depth of flow h. The downstream velocity is 
u, and the depth of flow h,. The liquid phase is assumed to wet the upper wall, 
with a zero contact angle, in preference to the light phase, and the two-phase 
interface has a radius of curvature of R at its point of contact with the upper 
wall. Following Benjamin (1968), volumetric, momentum and energy balances 
are written between a station far upstream and a station sufficiently far down- 
stream for the velocities to be sensibly uniform, but terms involving surface 
tension are included. To write the balances it is assumed that the point of contact 
of the two-phase interface with the upper wall is a stagnation point and they are 
then respectively, 

(3.1) uh = UZh2, 

pu2h + ipgh2 = ~ U U Z  h + [&puZ + (g/.R) + &gpL(h - hz)] (h  - h,) 

+u' + gh = Qu2 + +u; + (g/pR) + (pL/p) g(h - h2) + gh,, 

+ [&pu2+ (a/.R) +gpL(h-h,) + Qpghz] hz- 2 ~ ,  (3.2) 

(3.3) and 

where energy losses have been ignored and pL is the light phase density. It is, 
perhaps, helpful to note that g/R is the pressure rise over the two-phase inter- 
face at the stagnation point and also that the last term of (3.2) comprises the 
sum of the tension in the interface at the downstream station and the tension in 
the interface at its point of contact with the upper wall. 

Before (3.1) to (3.3) can be solved to obtain useful results we require a value 
for R, which would be difficult to obtain theoretically for the whole range of X. 
It is noted, however, that the relevant part of the interface is in a region of low 
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velocity and thus there is a reasonable expectation that R will not vary sub- 
stantially. Now R = R, for the critical blocked flow condition can be determined 
unambiguously by setting u = u2 = 0 in equations (3.1) to (3.3). Equation (3.1) 
becomes redundant, (3.2) reduces to a simple force balance and (3.3) becomes a 
statement of pressure equilibrium. Simultaneous solution of (3.2) and (3.3) yields: 

or 

A slight difficulty is now noted, that the experimental result was 2;, = 0.368 
for a square-edge sill, which, however, had an undrained liquid depth on it of h,, 
as shown in figure 2 .  A force and pressure balance, in the same manner as carried 
out above and assuming a contact angle of QTI with the horizontal surface, yields 

h, = (2a/Apg)*. (3.6) 

Thus the experimental value of 2, based upon the sum of h, of equation (3.4) 
and h, of equation (3.6) should equal 

2, = (1 + 0.5*)-2 = 0.343. (3.7) 

Agreement between the theoretical and experimental value is sufficiently close 
for the value of R, of (3.4) to be accepted and to write 

o - ~ R  = KApghC*, (3.8) 

where K = k + ( l  - k ) C t ,  (3.9) 

and k is an empirical constant. Equations (3.8) and (3.9) merely state that R 
varies from R,, given by (3.4), when 2 = 1 to R,/k when X = 0. K must be 
close to unity for the analysis to be of value in interpreting experimental results. 

Substitution of (3.1) and (3.8) in (3.2) and (3.3) yields 

F 2 ( 2 - H ) / H  = 1-H2-ZKC*+C, 

QF2/Hg = 1 - H - KCB. 

(3.10) 

(3.11) 

Simultaneous solution of these equations, using lc = 1.0 and k = 0.8, gave the 
F versus 2; curves of figure 3. It is seen that the curve for lc = 0.8 fits the results 
very well, except for the quiescent flow regime for C > 0.105. In any case this 
curve does not extend beyond C = 0.275, for reasons which will become clearer 
during the discussion of the liquid depth beneath the bubble. 

It may be noted in passing that the treatment given above may now be used to 
estimate the error in employing an experimental channel of finite width to  
determine the bubble velocity that would be obtained in an infinitely wide 
channel. It is found that the error in F ,  for a channel of l00mm width, has a 
maximum value of 4 % at 2; = 0.1, if account is taken of the tension in the liquid 
film wetting the side walls. 

The agreement between the treatment and experiment is evidence in favour of 
the view that R does not vary substantially for the whole experimental range. 
This is also the impression gained by an inspection of the tracings of the bubble 
nose shown in figure 5, though they cannot be used for an accurate measure of R. 
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The treatment must be extended in order to compare it with Zukoski's (1966) 
results for a tube. First, one must assume that the downstream two-phase inter- 
face is plane, though near the blocked condition it must have one radius of 
curvature almost equal to the tube radius. Secondly, the two-phase interface 
must have a second principal radius of curvature, besides R, equal to the tube 
radius a t  the point where it contacts the upper wall. Lastly (3.4)' (3.8) and (3.9) 
must be reconsidered even though it is found that they remain unaltered. A force 
balance and pressure equilibrium still yield R, given by (3.4), while the flow near 
the top stagnation point for a very large tube will approximate to the two- 
dimensional system and thus there is no reason to believe that k will be sub- 
stantially changed. We get 

- = 2[1 - H ]  - &[l+ 2KX,,4], [:=I2 
(3.12) 

(3.13) 

in place of (3.10) and (3.11). A and A ,  are the cross-sectional areas of the tube 
and of the liquid far downstream respectively. x and X, are respectively the 
distance of the centre of pressure of A from the top of the channel and of A ,  
from the two-phase interface. S is the perimeter of the light phase far downstream 
and a is the tube radius. 

O" t 
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FIGURE 7. Comparison of experimental and calculated values of F ,  
for a horizontal tube. 

Solutions of these equations are shown in figure 7 in comparison with Zukoski's 
experimental results. Agreement when k = 0.8 is again excellent, though the 
curve does not cover the whole experimental range, largely due to the assumption 
that the downstream interface is plane. It should be noted that Zukoski s results 
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appear to be tending to a value of F, which is higher than the theoretical 
value of 0.542 given by Benjamin for C, = 0. It is possible that F, is tending to 
0-567, which is the maximum value that could be achieved with energy losses 
occurring, as discussed by Benjamin (1968). The results are not sufficient, how- 
ever, to resolve this point. 

3.2. Depth of $ow beneath the bubble 

The treatment of the last subsection contained the assumption in (3.3) that 
the flow was lossless, a t  least in the region between a station ahead of the bubble 
and the position of the minimum flow depth near the bubble nose. Measurement 
of the bubble velocity, however, is an insensitive test of this assumption, as is 
evident from the discussion of Zukoski’s results, and a much better test is pro- 
vided by the measurement of flow depth beneath the bubble. 

Benjamin (1968) showed theoretically that, in the case of two-dimensional 
bubbles studied here, F = H = 0.5 for lossless flow when Z; = 0. Further, as 
energy losses are increased from zero, F increases to a maximum value of 0.5273 
when H = 0.6527. Simultaneously the Froude number for the flow beneath the 
bubble and relative to  the bubble nose decreases from J2 to unity, so that the 
magnitude of a hydraulic jump travelling with the bubble would be expected to 
decrease to zero as the maximum value of P was attained. It is readily demon- 
strated that similar results are to be expected for C > 0 and in particular that 
the maximum value of F will correspond with a Froude number of unity for 
flow beneath the bubble. 

Figure 4 shows that H tends to approach 0.5 as I; tends to zero and that it is 
therefore unlikely that there are substantial energy losses when Z; = 0. Figure 4 
also shows that the curve estimated from (3.10) and (3.11) with E = 0.8 lies 
fairly close to, though mostly slightly below, the experimental crosses. This 
provides an indication that, although some losses may occur for X > 0, they are 
not severe. It was also noted that in the range of C from 0.02 to 0.105, large waves 
occurred, travelling with the bubble. They can be interpreted as an undular 
hydraulic jump, occurring after the minimum flow depth has been achieved. 
According to the arguments given above, jumps of the magnitude observed are 
unlikely, if the losses ahead of them are appreciable. 

The section of the curve labelled HJ in figure 4 was derived from the estimated 
values of H using the hydraulic jump equation on the flow beneath the bubble for 
a jump keeping pace with the bubble nose. The equation is 

HJ = +H[( 1 + S(FZ/H3))* - 11. (3.14) 

The complete curve of H and HJ versus C makes it clear why the curve of F 
versus C with Ic = 0.8 in figure 3 terminates at Z = 0.275. 

3.3. ThefEow riqgimes 

The boundaries of the three flow regimes described in 9 2 were well defined and a 
physical reason for them is desirable. A complete explanation cannot be given 
from the evidence available but the following is worth noting. If (3.10) and (3.11) 
are solved with E = 1.0 it is found that the flow beneath the bubble relative to 
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the channel wall for C < 0.027 is subcritical, with a Froude number less than 
unity, and is supercritical for larger values of C. If the equations are solved with k 
between 0.8 and 1.0, the flow becomes supercritical at a value of C slightly larger 
than 0.027 but again becomes subcritical at a value of C less than unity. Thus it 
is possible that a hydraulic jump occurs to avoid supercritical discharge over 
the sill but more accurate information concerning the variation of the radius of 
curvature of the two-phase interface at  the top wall with respect to I; is required 
before this conjecture can be properly tested. 

The flow regime boundary at  C = 0.105 may also have been influenced by the 
difficulties in drainage observed as the blocked condition was approached at  
Z = 0.368. It is also worth noting that the flow beneath the bubble relative to 
the channel wall was laminar for this regime since the Reynolds number, using 
the depth of flow as a characteristic length, was 500 or less and the basic assump- 
tion that the velocity was uniform with depth, used in deriving equations (3.10) 
and (3.11), is no longer satisfactory. 

4. Conclusions 
Experimental results have been obtained for the flow of long bubbles in 

horizontal rectangular channels over a wide range of depths. The hypothesis 
that the radius of curvature of the bubble nose a t  the top of the channel does 
not vary greatly from its value in the situation where the channel is just shallow 
enough to block the flow explains the experimental results for both rectangular 
and circular cross-sectioned tubes. 

It is stressed that surface tension effects are present even when C approaches 
10-4. Thus any proposed theoretical treatment of this problem must consider 
such effects or be restricted to systems of substantial depth, which for the air- 
water system would be greater than the largest value of 175 mm studied here. 

The work was carried out at  the Central Electricity Research Laboratories 
and is published by permission of the Central Electricity Generating Board. 
NIr C. E. Hagger gave valuable assistance in the experimental part of the work. 
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FIGURE 1.  Photographs of the bubble. 
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